If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2+9x+2x+6=0
We add all the numbers together, and all the variables
3x^2+11x+6=0
a = 3; b = 11; c = +6;
Δ = b2-4ac
Δ = 112-4·3·6
Δ = 49
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{49}=7$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(11)-7}{2*3}=\frac{-18}{6} =-3 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(11)+7}{2*3}=\frac{-4}{6} =-2/3 $
| -2x^2+44x+8=0 | | 5f-6+4f+3-2f=45 | | h(-18)=17+-18/6 | | -3((x+5)=-18 | | 8(a-2)=-3(2a-6)= | | 5/8=y+5/9 | | 7x+9-7x-9=3x-6 | | (X+9)/3=2(x+1)/4) | | 11^y+5=15 | | √5x+14=6 | | 121x^+4=0 | | 9a+3(a-6)=-6 | | 2x+5-3x+7=2x+5 | | 7/3x-11/6(x+3)=x-13/2-1-3x/5 | | x+17x=73 | | (4x+4)=(5x-22)=90 | | (5x+15)=(6x-10)=180 | | 10x+20-5x=30 | | 360=2x+40 | | X+7-4(x+1=-10 | | (19+45)+((19)+40)+y=180 | | 2x+6=7x=x+4 | | 10m=45 | | 32w^-81=0 | | 180-3x-10+25+x+15=180 | | 30x+39=9 | | x/(x+9)=4/7 | | 15y+9=3 | | y-19=-(2y+4) | | X=14.4-2.4t | | 6s+23=197 | | 7x-4=-3x-48 |